STAT 2593

Lecture 030 - The Z Test for Hypotheses about a Population Mean

Dylan Spicker

The Z Test for Hypotheses about a Population Mean

Learning Objectives

1. Understand how we test population means in (approximately) normally distributed populations.

See my past discussion of introductory statistics education.

Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative, $H_1: \mu \neq \mu_0$.

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- ▶ We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - Nay also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ or $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$.

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ or $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$.
- ▶ We have see the sampling distribution for

$$Z=\frac{\overline{X}-\mu_0}{\sigma/\sqrt{n}}.$$

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ or $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$.
- We have see the sampling distribution for

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

• If μ_0 is the correct mean, this will be N(0, 1).

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ or $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$.
- We have see the sampling distribution for

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- If μ_0 is the correct mean, this will be N(0, 1).
- Note: we do **not** need a normal population for this.

- Suppose we have a sample from a normal population, with known variance (σ) and unknown mean.
- We wish to test: $H_0: \mu = \mu_0$ versus the alternative,
 - $H_1: \mu \neq \mu_0.$
 - May also consider $H_0: \mu \leq \mu_0$ versus $H_1: \mu > \mu_0$ or $H_0: \mu \geq \mu_0$ versus $H_1: \mu < \mu_0$.
- We have see the sampling distribution for

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}.$$

- If μ_0 is the correct mean, this will be N(0, 1).
- Note: we do **not** need a normal population for this.
- How do we find our p-value?

Calculating p-values

Calculating p-values

Calculating p-values

▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.

- ▶ If we observe z, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$

- ▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$
 - Can use the tables, critical values, or statistical software we have seen before.

- ▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$
 - Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.

- ▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$
 - Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.

• If $H_0: \mu \ge \mu_0$, then only consider $P(Z \le z)$.

- ▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$
 - Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.
 - If $H_0: \mu \ge \mu_0$, then only consider $P(Z \le z)$.
 - If $H_0: \mu \leq \mu_0$, then only consider $P(Z \geq z)$.

- ▶ If we observe *z*, we want to compute $P(|Z| \ge |z|)$.
- For symmetric distributions this is given by $P(Z \ge |z|) + P(Z \le -|z|).$
 - Can use the tables, critical values, or statistical software we have seen before.
- If our null hypothesis is one-sided then one of the two tail regions does *not* provide evidence against H₀.
 - If $H_0: \mu \ge \mu_0$, then only consider $P(Z \le z)$.
 - If $H_0: \mu \leq \mu_0$, then only consider $P(Z \geq z)$.
 - Note here we do not take the absolute value.

Rejection Regions for Hypothesis Tests - Critical Values

Two Sided Hypothesis Test – Rejection Region

If the sampling distribution is approximately normally distributed, can use a N(0, 1) to run hypothesis tests.

The rejection region depends on the alternative being considered.